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Some missions using packets andjor data compression may want an undetected GCF
block error rate of 106, Here we show that the present GCF meets this requirement.

. Introduction

The DSN GCF High-Speed Data Lines and Wideband Data
Lines use blocks of length 4800 bits, 22 of which are parity
bits generated by the NASCOM polynomial (Ref. 1):

G(X) = X224+ x20 4 x4 4 13 4 x12 4 x11 4 x8
+ X7+ X5+ X4 X 41 )
or, in factored form,
GX) = (X+DP X +x3+ DX +x3+ X% +X+1)

A codeword or code block in this code is a block of 4800
bits of 0 or 1 which is identified with a polynomial in X with
0 or 1 coefficients and modulo~2 addition. A codeword then
is polynomial of degree at most 4799 divisible by G(X).

If an error is detected by virtue of the fact that the re-
ceived block, regarded as a polynomial, is not exactly divisible
by G(X), an error is detected, and a retransmission may be
requested depending on mission requirements (Ref. 2). Mea-
surements conducted for the TDA Engineering Office show
that at most one block in 200 contains at least one bit error,
so, without retransmissions, a throughput of 99.5% (or more)

is obtained. The actual probability that a block contains an
error will of course be slightly greater than this because of
undetected errors.

The undetected error rate is the probability that a block
passes the divisibility test but nonetheless contains an error.
For packet telemetry systems (and all the more for packet
telecommand) as well as for missions with image or other data
compression, it may be necessary to keep this undetected
block error probability below 1076 (Ref. 3). Is the block error
probability below 10~6? It is hard to measure directly with
current instrumentation, but this article shows that the
requirement is met anyway.

. Code Structure

Reference 4, plus a little calculation, shows that a length-
4800 binary code with 22 check bits is at most single-error-
correcting, Since X + 1 is a divisor of G(X), the weights of
the codewords are all even. Hence our code has minimum
distance 2 or 4.

Actually, the minimum distance is only 2. This is because

of the following argument. From Ref. 5, define M® (X) =
X0 +x3+1,a primitive polynomial, with root, say, . Then
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M® (X), defined as the irreducible polynomial with root a,
also has degree 10 and is the second degree -10 factor in
G(X) of Eq. (1). Thus:

G(X) = (X +1)* MY () M® (Xx)

Here MM (X) divides X1°23 + 1 and no smaller binomial, by
primitivity. The theory of equations shows that M® (X)
divides X3*! + 1 and no smaller (because 1023 = 3 X 341).
So H(X) = (X + 1) MD () M® (X) also divides X 1923 +
and no smaller binomial. Thus, G(X) = (X + 1) H(X) divides
(X1923 + 1) = X204 + 1, But X29% + [ is a codeword,
being a multiple of G(X). Hence there are codewords of
weight 2, and the code is of distance 2, not 4.

We note in passing that the code generated by M O (x) -
M® (X) alone, of degree 20 (20 check bits) generates a
distance-5 BCH code of length 1023 (Ref. 6). The NASCOM
code however uses (X + 1) times this, of degree 22, but,
more importantly, out to length 4800. How many code-
words of weight 2 are there in the NASCOM code? We need to
know this to estimate error probabilities.

If C(X) is a codeword of weight 2, then
cx) = (xX'+1)x

for some non-negative integers with 7 +j at most 4799. Now
G(X) divides C(X) since C(X) is a codeword, so G(X) divides
X' + 1. All the more, M (X) divides X’ + 1, so { is a multiple
of 1023. Since (X + 1) must divide X* + 1, i must be even.
Since i +f is at most 4800, { = 2046 or 4092.

If i = 2046, j can range from 0 to 4799 - 2046 = 2753.
There are 2754 codewords X/ + X/ with i = 2046. If i =
4092, j can range from 0 to 4799 - 4092 = 707, so there are
708 more codewords of weight 2. Altogether, the code has
2754 + 708 = 3462 codewords of weight 2.

lll. Independent Errors

First suppose bit errors in a block occur independently.
This is not necessarily the case. But, if it were, the input bit
error probability is derivable from the fact that at most one
_ block in 200 contains at least one error. If p is the bit error
probability, it will be small. So the block error probability 7
is about 4800p, and

=1
4800p = 300
p = 096X 107¢

200

What then is the undetected block error probability of this
code? We will upper-bound it as the probability of an unde-
tected double error plus the probability of all quadruple (or
higher) errors. We can ignore triple errors because they are of
odd weight, hence detectable. The probability of a particular
double error is

o
]

p2 (1 _p)4798

b

9.174 X 10713

There are 3462 double errors which are codewords, so the
probability of an undetected double error is 3462 times b, or
3.176 X 107°.

We can upper-bound the probability of quadruple or higher
errors in the independent-error case by the probability of
quadruple errors alone, because p is so small. This can be made
quantitative using the “tail estimate” for the binomial distribu-
tion (Ref, 5, App. [A.5], p. 467), but we omit it. The prob-
ability of quadruple error is (4800 X 4799 X 4798 X 4797)/24
times p* (1 -~ p)*7°® = 1.868 X 107!1. Adding the previously
derived probability of undetected double error, we find that
an upper bound to the undetected block error probability
when using the NASCOM 22-bit polynomial with inde-
pendent errors is

3.195X 107°

This more than meets the undetected block error probability
requirements.

IV. Arbitrary Error Structure

Now suppose we know nothing of the error patterns, just
that one block in 200 contains at least one detected error.
This is almost the same as one block in 200 containing an
error, detected or not, and it is this that we shall actually
assume. Let us even assume, as the worst case, that every
block with an error contains at least two errors. In fact, a
little thought shows that the worst case is when all the errors
are double errors. This is essentially because higher error
patterns are so numerous that they tend to distribute them-
selves randomly with respect to the code. Thus, approxi-
mately 2722 = 2.5 X 10~7 of the higher error patterns can be
expected to be codewords. What is the exact fraction for
double errors?

There are (4800 X 4799)/2 = 1.152 X 107 error patterns of
weight 2, but, as we have seen in Sec. II, only 3462 codewords
of weight 2. If we assume, as we do, that all error patterns of




a given weight, in particular of weight 2, are equally likely to
occur, the probability that a double error pattern is a code-
word is

3462/1.152 X 107 = 3.006 X 1074

This is almost 1261 times as large as the 2722 probability we
would get if double error patterns distributed themselves
randomly with respect to the entire code.

The probability of undetected error in these strange circum-
stances can be found as follows. We start with 1/200, the
probability that there is at least one (and so, by our assump-
tions, exactly two) errors in the block. We multiply this by
the probability that the error pattern is a codeword and,
hence, is undetected. Thus, the undetected block error prob-
ability is

_1_ -4 - —6
300 X 3.006 X 10 1.503 X 10

This slightly exceeds the 107 undetected block error prob-
ability requirement. However, the assumptions under which
we derived this high error probability are so extreme that we
can consider that we do meet the 107° requirement. For
example, if half the blocks in error contain a single error
(which is, of course, detected) and half contain a double
error, the above estimate drops by a factor of 2 to 7.5 X 1077,
and the requirement is met.

We restate here that if we monitor the links to make sure
we are getting the 99.5% throughput, then we will also be
confirming the 107 or less undetected block-error probability
as well. The GCF with error detection by the NASCOM
22-bit polynomial is compatible with the extremely low
undetected GCF block error probabilities that some missions
may want in the packet era.
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